Solar System Exploration Strategy

Doug Stetson

Jet Propulsion Laboratory June 2, 1997

Future Missions and Required Capabilities: 2005 - 2020

- A future program of exciting, rewarding, low-cost missions will be enabled by the technology investments we are making today
 - Micro-avionics systems...toward a "spacecraft-on-a-chip"
 - High-performance propulsion and communications
 - Surface and atmospheric mobility, entry systems
 - Remote and *in situ* instruments and sampling systems
 - Autonomy, survivability, information systems
- The core "component" technology developments that will lead to these future system capabilities must continue to be supported
- The future planetary program will continue to emphasize *in situ* exploration and sample return, along with complementary remote sensing missions as needed. High-priority future objectives will include:
 - Europa interior and possible organic chemical processes
 - Venus and Titan atmospheres and surfaces
 - Continued sampling and in situ analysis of small bodies and Mars
 - Giant planet deep interiors and the Neptune/Triton system
 - Mercury and Io surface and interior studies

Solar System Exploration Missions

Chemical Origins and Pre-Biotic Chemistry: An Integrated Mission and Technology Program

Mars Exploration: Integrated Mission and Technology Program

Life in the Cosmos

Eucarya

Chemistry Pre-Biotic

Earth-Like Planets

Water and Organics: The Building Blocks of Life

Family Portraits

Jupiter-size **Planets**

Planetary Potential

